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The state of stress of a homogeneous and piecewise-homogeneous plane with a 
thin-walled elastic inclusion of finite length was investigated in [ 1 - 41. The 
man1 attention in [l, 21 was paid to determining the difference in the shear 
stresses on opposite edges of the inclusion under the assumntion that the displace- 
ments are equal. Consequently, the solution of the Prandtl integral equation, to 
which the problem reduced, is suitable for flexible inclusions with a sufficiently 
high elastic modulus. The approach in [3, 41 for the case of a homogeneous 
plane was somewhat different, where the relative displacement of the inclusion 
edges was taken into account while the difference in the originating stresses was 

neglected. Some results for a corresponding periodic problem were obtained in 

C5, 61. 
The periodic problem of elastic equilibrium of a plane consisting of two bon- 

ded isotropic half-planes with finite thin-walled elastic inclusions on the straight 
line of separation of the materials is studied. A system of singular integral equa- 
tions is obtained, whose solution is suitable for inclusions of any stiffness from 
absolutely stiff or flexible but inextensible to absolutely yielding (slits), There- 

fore, a close connection is established between crack theory and the theory of 
thin-walled elastic inclusions. In the limit case, the solution is obtained for the 
problem of one inclusion in a more accurate formulation than in [l - 41. 

1. The elastic equilibrium of a plane consisting of two bonded isotropic half-planes 
with thin-walled elastic inclusions of length 2a and width 211, arranged on the straight 

+_-L_“_I___L, 
line separating the materials with the period 
271 (Fig. l), is considered. It is assumed that 

z 
t- 

Jp2 
the half-planes are subjected to stresses at 
infinity(o,a = P, (Sxlm = PI, ox2m = 

P2) as well as to the system of p1 groups 

of concentrated forces Qj = Qxj + iQ,, 

PI' 
acting at the points zoi + 2nn (i = 1, 2, 

-4 L,T . . . . P? n = OT tl, 312, ...) and p2. + p + $-- 
groups of moments Mk applied at the points 

ZkO + 2nn (k = 1, 2, . . . . Dz; n = 0, 
Fig. 1 * 1, _+2, . . .). The first m1 groups of for- 

ces and m2 groups of moments are applied 

at points of the lower half-plane, and the rest in the upper half-plane. Such a load se- 
lection permits considering the problem periodic since the stress-strain state is identical 

at the points z + 2nn (n = 0, & 1, t2, . . .) . Therefore, we can henceforth limit 

ourselves to analyzing the strip 1 x 1 < n, 1 y 1 < CC. 
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Let I,, denote the set of intervals [Znrt - a, 2nn + a] (n = 0, *I, t-2, . ..) 
occupied by the inclusions, and ,& the rest of the real axis. 

Taking account of the small thickness of the inclusions, let us write the boundary con- 

ditions on the line y ==- 0 as (1.1) 

(51,1- i T,& - (au2 - i Txl,z )_jl(~)_~j2(x)={f1*(x’~if2*(x)7 :E: 
7 2 

(UI’ _I- i Ul’) - (u2’ + i ug’) = /s(x) $ ifq(x) = 
i 

f3* (4 + i f4* (4, 5 f3 L1 
0, XEL2 

fj(z) = jj (x + 2nx), j = 1, 2, 3, 4; n = 0, + 1 j-2, . . . - .- 

Under the assumption that the transverse strains are equal at the edges of the inclusions 

we have, by analogy with [7], four conditions for interaction between the thin-walled 
inclusions and the surrounding medium 

%’ + u2' = 2kAc - J%(q)1 + $2) (1.2) 

u2 - Ul = +%,,I + %x42) --h(Q + 7J2') 

up' - Ul' = --I<, (%,2 - %/I) 

2: - 2 Dl = k,h ((JYl + 4 - 2&ho,, XEL1 

Here 

Q, = N_ + & : [%2 (0 - %,l (t>l dt, 2nn-a<\(<\<nn+a (1.3) 
.I 

2nz--a 

rL=O,&l, *a,... 

k, = &, kl = $+ > k, = 
k,2 - ko2 Eo 

kl ’ IJo = -2 (1 + VO) 
(1.4) 

The subscript 1 refers to the lower half-plane, the subscript 2 to the upper half-plane, 
a xvi7 (Eli, oxi are the shear and normal stresses, ui, ui are components of the displa- 
cement vector, E,,, Y,, are the elastic modulus and Poisson’s ratio of the material of 

the inclusions, A_ is the normal stress on the left endfaces of the inclusions, and fj (z) 
are periodic functions to be determined. 

2. The stresses and displacements are given by the formula [8] 

$j - 1 z,,j = @j (4 + @j (2) + z @j’(z) yj (2) (2.1) 
- - 

2/Aj (Uj’ + i Vj’) = XjOj (2) - CDj (2) - 2 @j’(Z) - Yj (2); j = 1, 2 

Dj (Z) = ZjlSj, (Z) + l?j + @oj (Z) 

Yj (Z) = ZjlRj, (Z) + Ej2Rr* (Z) f rj’ + Ypoj (z) 

sjk lz) = - ej 
?I=--cc 

z + 2,Q,k_ z 

Ok 
cm 

Rjk (Z) - 9 2[ %jok 60, + 2’4 Qk 

?I=--a0 z + 2n7c - ZOk - (z + 2nlc - ZOk)2 I 

i z -t 2,: - zkO 9 
?I=--m 
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@,j (z), Yoj (2) are functions holomorphic outside .& which vanish as z --P s + ioo. 

Let us determine cf>, Iz) in the upper half-plane S, and a)2 (2) in the lower half- 
plane s, by the relationship 

@j (Z) = -%j ‘2) - Z6j’ (2) - Fj [Z), z E &‘k; j, k z 1,2; k =ft i 

and by using formula (1.421.3) in [9] we obtain on the real axis 

%l - iz,,, = @‘01- @I - @II,’ k> -+, A, (2) (2.2) 
2pL, (ur’ + iv,‘) = x1@,,- fr> i- Ool+ LX) + B, (z) 

@,, - izX,,, = &+ (3) - CD,,- (X) -t A, (z), 2p8 (zlz’ + iz+‘) = 

%@02+ (x> + @oz- (XI -i- 3, (XI 

ejZjl [(gk - %Qk) b(x) -xjQkLk(x) - e&k(x)] -Xj:j” 3 Lk* (X) 

Aj = rj + fj + ~j’, ~j = “jrj - ~j _ Fj’ 

Using the relationship (2.2) and solving the appropriate conjugate problem we find 
from conditions (1.1) after some manipulation 

%l+ (2) = _ Jk [z&Y+(X) i_ x2y+ (a)j 12.3) 

Q); (z) = J& [- .&x- (CC) i_ Y- (s)] 

@02+ (4 = -& [--- 2pJ (4 + Y’ WI 

a&$- (2) = -g [2pX (x) --t XIY- (x)1 

Xfp) = _t+ [Zw (XT) + f3 (x) -+- i f4 (z)] + & r 2W (‘) ‘,‘Ji A- if4 (‘) dt 
--co 
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Substituting (2.3) into (2.2). separating real and imaginary parts, and also taking ac- 
coUnt of the periodici of the functions fj (x), we obtain expressions for the stressesand 

the derivatives of the displacements 

@IJ: ‘(“I 1%’ (x) + q~+fi ix) + l~-f, (z) + ml,-t, (3~) -Zl+t4 (2) (2.4) 

5ul;x~ = 

%l (2) - fl(X> 

-ho (2) + m12+f2 b) - II-f4 b) - ml,-t, (3~) - 
4+t, (4, %2 (x) = Tq/l (z) - f2 (3) 

~Xl (XI = %I0 cd + h-f1 Le + r12+f3 (3 + n,,+t, (5) - 

rl2-b (d Ixl<a 

0x2 (5) = Go Cd - %I% (2) - r21+f3 (5) + %21+t, b) - 

r21-t4 cd 

Ul' fx) = ZP w + l,-fl h) + %+f3 Cd + 12+t2 (5) + 

%x-t4 (h %' 69 = Ul' Cd -- fs b) 

ul' b> = #' W - 12-f2 (5) + m21+fa (4 + 12+tl (x) - m2,-t, (3) 

02’ (Ic) = U[’ 6x) - fb (x) 

Here 
CJ,O (CC) = Tm II, (x)1 + Re [Is (x)1 (2.5) 

-r,yO (z) = Re [II (x)1 --Im 11, (z)] 

o.ry (z) = Im [Ii,, (~$1 + 2Re [---2ejZjlQkLk (4 f 2rj - 

(-l)j rj, W (X) + &jAj (x) + PinAnti) 

u"' (x> = Im II, (x)1 + Re [I, (x)1 

ZP (x) = -Re [I2 (x)1 + Im 114 (41 

4 (4 = & i fj (2) ctg (9) dt, 
co n;$ (t) - 2’$0 (t) 

Ij, (2) = f \ t-x 
at 

---a -cc 

oi, 

I,(s) =f \ mrz-Q ‘:‘_-,2~1’” P) &, 1, @) _ : \ ’ h+Si (t) + 2mrro (t) dt 
t-x 

--ia -02 

13 (4 = m21+4 (4 4 m12+A2 (4 + 2z1-~ (4 

I4 (x) = $$ RI(X) + g Bz (x) - b-Q (2, 

CL* 
Qjn = - r -+mj,+, 

Pj 1 
pj* = - - 2 mj,+ 

n3 =jn 

rjn* = IWa 
3c*j f cj, 

mj7S = Pi 
'nj f "jn*n 

c12e21 ' 
2elzezl 

?&j,* = pj 
3cnj *ej"x", z,* = cL1~2 

Zc12c21 i &A) 

enx1f c12x2 
z,*= 4 

c12c21 ' 
i=1,2,3,4; i, n=1,2; n=#j 
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kl”, %1°, GeO, .Gcyo, u ot 0, , v are the appropriate stresses and derivatives of the dis- 

placements on the line joining the half-planes in the absence of inclusions). 

Substitution of (2.4) into condition (1.2) results in a system of integral equations 

Here 
PI (z) = k lk,N_ - ZP’ (x) - klzlJO (z)] (2. v 

h1=&, 
1 

A,=--& 
a 

A,= $7, 
1 

11, = lsT + kImI,-, A, = ml,-po - II+, A, = mzl+ - $ 

The stresses at infinity and the elastic constants of the materials are connected by 

the relationship (2.8) and the desired functions by conditions (2.9) 

a 

s fi (t)dt = Ai, i = I, 2, 3, 4 
-_(L 
A’ = 0, A2 = 2h (N, - Iv_), A3 1 Cl+ - cl-, A4 = cq+ - c,- 

The normal stresses at the endfaces of the inclusions N+ are determined by the for- 

mula& = -& [rhsrrO (z) + Tl&; (x)] Ix=_ta, ?Ji =I Inin :“p’ Pi1 I’;*, i -= 1, ?. (2.10) 

The quantities C,f and ca+ characterize the displacement of the lower edge of the 
inclusion endface 1c = + o relative to the upper edge of the same endface in the 05 
and oy directions, respectively, and are evaluated by means of the formulas 
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Because of the interface conditions, the normal and shear stresses (with the exception 
of B,i (z)), as well as the derivatives of the displacements of the edges of the inclu- 

sions are described by (2,4), where the subscripts 1 and 2 should be referred to the lower 

and upper edges of the inclusions, respectively. The mean normal stress in the transverse 
section of the inclusion cr, is determined by (1.3). 

In the case of absolutely stiff inclusions (Es --t oc) , we have fs (L) = f4 (x) = 0, 

and the system (2.6) goes over into one equation to determine the functions fr (5) + 

- -& [u” (x) - iu” (x)] , I”l-\<a 

when J!& = 0, we obtain fr (x) = /s (x) = 0 and the integral equation of the 
periodic problem for the system of slits on the line separating the two plane media is 

1 a 
Zni \ ]fs (t) 4 ill* wl ctg (9) dt-_[[fs(Ic)+if,(x)] = (2.13) 

--a 

&-ldv”(+-ir.v”Q)l, Isl<(J 

If the inclusions have a negligibly small bending stiffness, then we can a priori 
put fryI = oy2. The fourth equation in the system (2.6) should be eliminated from con- 
sideration and it should be considered that fr (3) = 0. In this case we have fa (.;t’) = 0 

as Es + cc and the equation corresponding to the periodic problem of inextensible 
filaments mounted on a straight line separating the two materials is 

1 a 
5-T [ If2 (t) + i Ws (t)l ctg (9) dt + e [fa (x) -I- ih4fs (x)] = (2.14) 

---a 

y$ vO’ (4 + $7 2.P (5) 
I 

A, = 1/ - h&,- 1 &--I,“, Ixl<u 

The integral equations (2.12) - (2.14) have identical structure and are solved in 
closed form [lo]. 

3 % let the half-planes have identical mechanical characteristics (E, = E, = E, 
y1 = v2 L= v)- Then 

it 1s = A,, = ?$a = Aas = A,, = ass = 0 (3.1) 
in the system (2.6). 

Using the results in [ll]. where an integro-differential equation with a Hilbert kernel 
was solved in particular, let us seek the solution of the system (2.6) in the case (3.1) as 
the series 



500 D.V.Grilitskii and G.T.Sulim 

ii (IC) = set G [2 (cos 5 - cos a)]-“’ 2 AniT,, tg (3.2) 
n=0 ( 

G ctg --&) 

i-1,2,3,4; Izl<a 

whose coefficients are determined from the infinite systems of linear algebraic eqLWiOnS 

(3.3), (3.4) and the relationships (3.5) 

G ALtl+p + i CT1&n+p, 2ktp + ~2 2 Bzntp, zjtpB%jtp, ,,+p] &z+ltp = @zk+p (3.3) 
TX=0 i=o 

cm 

Q1 = 2 sin -& gll + CllAOL + C12Aoz, al2 .= 2 sin $- g12 + CI”Aol 

a’13 = 2 sin % g13 + C14Ao” + C15A,” 

G, (4 = F, (2) + g A2, G, (z) = F, (x) + g A3 

G, (4 = F~(z) -&((h3L42 + ?L,'A~) 

B,,-I,~ = - 8 (1 j- 1) ctg $- 5 (-97 (2i + 1) (tg $)2jt1 x 
j=o 

[ 
. sm 2 lrn + ‘) n ’ [m2 _ (2j _ 1)21-l [ZnZ 1 - (2j + I + 2)“]-l 

i - 1,2,3,4; m, 1 = 0, 1,2, . . . 

(T, (5)) U, (cc) are Chebyshev polynomials of the first and second kind). 
Using the estimates presented in [ll], it can be shown that the systems (3.31, (3.4) 

are at least quasi-regular for any geometric and physical parameters of the problem 
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and the method of reduction is completely applicable for their solution. 
The stress intensity coefficients at the endfaces of the inclusions are determined by 

the formulas _. .- 

(k!ii, k&, k&i:,) = lim 1 

Using the formula 
x-+C+0 

& i ctg~+)T,jtg+g qsec; [2(COSt-coSa)~-ldt= 
--a 

J,, fi (x} - sign (2) T, (tg $ ctg t> set s [2 (cos a - cos z)]-I 

J1,@ (x) == + set < tg T , J,, k (z) = +- cosec $ (,, %)2UB._l x 

we obtain from the relationships (3.6) 

k_f’i = T &zK$ + l,+K$, k$ = + m;iKF _k lFK$ -- (3.7) 
k% = =F n&K? .k r,K?, kf, = F &Kaf -& rilK$ 

k?i, = n&K?, k& = - rni;KF, k& = mf&, k$,= -vn&K$ 

6, = nGK; + r:,K$, k$ = - z-z&K? - r&K$ 

Kf = set -$ (2a sin a)-1 i (&- l)‘%&j, i = 1, 2; i = 1, 2,3,4 
?I=* 

In the case of symmetry of the external load relative to the coordinate axes 

@,I = 2 sin; gj, Gj (5) = Fj (x>, pa (3) zz 0, j .‘= i, ~,3,4; t= O, 1, . . . 

the functions F, (s), F, (x) are even and the systems (3.3), (3.4) as well as the rela- 

tions(3.5) yield _&l --& A83 = & = & = 0, k.=O, i,... 

Hence, we obtain II (2) = f3 (x) = 0, 1 x J < a in particular. 
Denoting the stress intensity coefficients for the case of force and geometrical sym- 

metry of the problem as 

The coefficients ,&+i (j = 2,4) are found from (3.3) and (3.5) for p = 0. 
A numerical analysis of the problem was carried out on the M-222 electronic com- 

puter for two symmetric loading cases : 
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Fig, 2 

0.006 

Fig. 3 

1) (Svm = P, Oxirn= Pi .ZZZ 0 (i = 1, 2), 

no concentrated forces and moments ; 
2) loading is by the concentrated for- 

ces ;t iQ, applied at the points :t in ~.- 

2 an ,respectively (n -= . . . - 2, -1, 0, 
1 q ) L, . . . ). 

The system (3.3) is solved (for p = 0) 
by the method of reduction. i. e, a finite 

number of terms N was taken into ac- 
count in the expansion (3.2) and conse- 
quently a corresponding truncated system 

of linear algebraic equations was consi- 
dered, The convergence was checked by 

two methods: by comparing the functions 
fj.’ (2) (j = 2, 4) evaluated forA$r = J4 

and N = 2 M , respectively, and by com- 
paring the accuracy of satisfying the ini- 

tial system of integral equations (2.6) 
in the case (3.1) by the functions fj” (2) 
found. In the examples considered, de- 

pending on the relative length of the 
inclusion cc = a / n, it turned out to be 
possible to limit oneself to the solution 

of a system of equations from the 15-th 
to the SO-th order to achieve a 1% ac- 
curacy in the calculations. 

The calculations were performed for 
a I h = in, vII = v = l,lg. 

Figures 2 and 3 illustrate the depen- 

dence of the normal stress intensity coef- 
ficient lc~ on the relative length of the 
inclusion (Y in cases 1 and 2,resepctively. 
The curves 1 - 11 correspond to the fol- 
lowing values of the relative stiffness of 

the inclusions k = ~~ t E : 0.001, 0.01, 

0.1, 0.2, 9.5, 1, 2, 5, 10, 199, 1 990. The results represented by curves 1 - 11 differ from 
the solutions of periodic problems for slits and absolutely stiff inclusions, respectively, 
by not more than 1 - 2%. When z is almost zero, we arrive at the results for one isolated 
inclusion. 

REFERENCES 

1. Khachikian, A, S, , Eq~librium of a plane with a thin-walled elastic inclusion 

of finite length, Izv. Akad. Nauk ArmSSR, Mekhanika, Vol. 23, W 3, 1970. 

2. Suiim, G. T, and Grilitskii, D. V., State of sness of a piecewise-homo- 

geneous plane’with a finite thin-walled elastic inclusion. Prikl. Mekhan., Vol. 8, 
No II, 1972. 



3. Kurshin. L. M. and Suzdal’nitskii, I. D. , Stresses in a plane with filled 

slot. Prikl. Mekhan. , Vol. 9, No 10, 1973. 
4. Sotkilava, 0. V. and Cherepanov, G, P. , Some problems of inhomoge- 

neous elasticity theory. PMM Vol. 38, Ng 3, 1974. 

5. Khachikian, A. S,, Plane problem of elasticity theory for a rectangle with a 

thin-walled inclusion. Izv. Akad. Nauk ArmSSR, Mekhanika, Vol. 24, W 4,197l. 

6. Grilitskii, D, V. and Sulim, G.T,, Periodic problem for a piecewise- 

homogeneous elastic plane with thin-walled elastic inclusions. Prikl. Mekhan., 

vo1.11, N?l, 1975. 

7. Chobanian, K. S. and Khachikian, A. S. , State of plane strain of an 
elastic body with a thin-walled flexible inclusion. Izv. Akad. Nauk ArmSSR, 
Mekhanika, Vol. 20. W 6, 1967. 

8. Muskhelishvili, N, I. , Some Fundamental Problems of Mathematical Elasti- 
city Theory, “Nauka”, Moscow, 1966. 

9. Gradshtein, I.S. and Ryzhik, I. M., Tables of Integrals, Sums, Series and 
Products. “Nauka”, Moscow, 1971. 

10. Chibrikova, L. I., On the solution of some complete singular integral equa- 

tions. Uchen. Zapiski Kazansk. Univ., Vol. 122, Book 3, 1962. 
11. Morar ‘, G. A. and Popov, G. Ia., On a periodic contact problem for a 

half-plane with elastic straps. PMM Vol. 35, NP 1, 1971. 

Translated by M. D, F. 

UDC 539.3 : 534.1 

FREQUENCY SPECTRA AND MODES OF FREE VIBRATIONS 

OF DOUBLY PERIODIC SYSTEMS 

PMM Vol. 39, N? 3, 1975, pp. 530-536 
V. N. MOSKALENKO 

(Moscow) 

(Received June 27, 1974) 

An analog of the finite element method is proposed for the solution of natural 
vibrations problems for doubly-periodic systems. The approximate solution is 
constructed for each separate element. The infuence of adjacent elements is 
taken into account by the introduction of force factors and matching conditions. 

Numerical examples are analyzed. 

1, Let the doubly-periodic system be generally referred to an oblique Oz,z, coor- 
dinate system so that the properties of the system are repeated for a displacement a, 
along the (& axis and a2 along 0~~. Let us consider the vibrations of a single element 
bounded by the lines xi’ -- 0, xl’ =- a,, x2’ = 0, x2’ = a2 in a local coordinate 
system. Let us represent the dicplacement vector for the vibrations mode as a series ex- 
pansion in a system of coordinate functions 

n- 


